
(c) 2001 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com European Python Meeting at Bordeaux 2001

Python and Unicode

Unicode Support in Python

EuroPython Conference 2002
Charleroi, Belgium

Marc-André Lemburg

EGENIX.COM Software GmbH
Germany

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Python & Unicode: Overview

1. Introduction to Unicode

2. Python‘s Path to Unicode

3. Using Unicode in Python

4. The Future

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Python & Unicode: Part 1

1. Introduction to Unicode

2. Python‘s Path to Unicode

3. Using Unicode in Python

4. The Future

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Introduction to Unicode: The Problem

• Storing scripts: human readable text data

– Localization (l10n) and Internationalization (i18n) of software and
GUIs

– Basis for national language and script support

– Common ground for textual information
exchange

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Introduction to Unicode: First Approximations

• Mappings of bytes to characters: Code Pages (CP)

– Problem: Attaching the encoding information to the data
 No support in the OS for maintaining per data buffer encoding information
 Each application/protocol has to implement its own way of dealing with encodings

– Problem: Scripts with many characters
 e.g. Asian scripts use shift information to address all characters using 8 bits

– Problem: Not available for ancient scripts
 e.g. Old Italic

– Problem: Incompatible mappings for the same script
 e.g. Latin-1 and Windows CP-152x

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Introduction to Unicode: The Unicode Consortium Solution

• One encoding for all scripts of the world

• ASCII compatibility (even Latin-1)

• Includes character meta data

– Case mapping information
– Numeric conversion
– Character category information

• Accounts for scripts using different orientations

• Enables sorting and normalization support
 Also see the Unicode Consortium web-site at http://www.unicode.org/

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Introduction to Unicode: Other Solutions

• ISO 10646:
The ISO way of defining a Universal Character Set

– Code point compatible to Unicode
– Some minor differences in interpretation

– "Closed Source":
standard documents are only available on a pay-per-page basis

– Independent organization

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Introduction to Unicode: What is a Character ?

• Unicode Terminology

– Graphemes:

This is what users regard as a character.

– Code Points:

 This is an Unicode encoding of the string.

– Code Units:

 This is what the implementation stores (UTF-8).

d r é L e

d r ´ L ee
U+0301

Combining
Accent Acute

d r L ee Ì �
0xCC 0x81

UTF-8 for U+0301

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Introduction to Unicode: Statistics

• Unicode 3.0

– released: September 1999
– 17 * 216 – 1 = 1114111 = 0x10FFFF code points (17 planes)
– 49 194 assigned code points
– No assigned code points outside plane 0,

the Basic Multilingual Plane (BMP) which fits into 16 bits

• Unicode 3.1

– released: May 2001
– 17 * 216 – 1 = 1114111 = 0x10FFFF code points (17 planes)
– 94 140 assigned code points
– Assigned code points in plane 1, no longer fits into 16 bits

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Introduction to Unicode: Connecting to the Real World

• Conversions between Unicode and Code Pages (CP)

– Mapping tables are available at the Unicode web-site
– Examples:

• Latin-1 (Western Europe)
• CP-1250 (Windows Western Europe)
• KOI8-R (Cyrillic)

• Conversions between Unicode and other encodings

– Special encoders/decoders (codecs) are required for each encoding
– Examples:

• Shift JIS, EUC-JP (Japanese)
• Big5, EUC-TW (Chinese)

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Introduction to Unicode: Encoding Issues (Part 1)

• Round-trip safety

– Unicode .. Encoding .. Unicode
• UTF-7 (7-bit encoding, for e.g. email)
• UTF-8 (8-bit encoding, 1-4 bytes per code point)
• UTF-16 (16-bit encoding, endianness is an issue)
• UTF-32 (32-bit encoding, memory / disk space intense)
• These are loss-less encodings !

– Encoding .. Unicode .. Encoding
• Most code pages (IBM, Microsoft, etc.)
• Asian encodings: Chinese, Japanese, Korean, Vietnamese (CJKV)
• Not necessarily loss-less !

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Introduction to Unicode: Encoding Issues (Part 2)

• Identifying Encodings

– Byte Order Marks (BOMs)
• Originally: Marker for little vs. big endian for UTF-16/32
• Microsoft: uses BOMs as Unicode file magic

– Auto-Detection:
• often requires knowledge about the encoded data
• BOMs + file headers usually go a long way (e.g. for XML-data)
• Protocols can have encoding meta information (e.g. HTTP Content-Type)

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Introduction to Unicode: Internal Storage Formats (Part 1)

• Unicode Transfer Format 8 (UTF-8):

– 8-bit variable length encoding: 1-4 bytes per code point
– Problem: indexing and slicing

• Universal Character Set 2 (UCS-2):

– 16-bit fixed length encoding: 2 bytes per code point
– Problem: not all code points are representable

• Unicode Transfer Format 16 (UTF-16):

– 16-bit variable length encoding: 1-2 words per code point
– Problem: indexing and slicing

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Introduction to Unicode: Internal Storage Formats (Part 2)

• Universal Character Set 4 (UCS-4):

– 32-bit fixed length encoding: 4 bytes per code point
– Requires ISO 10646 standards conformity
– Problem: memory consumption

• Unicode Transfer Format 32 (UTF-32):

– 32-bit fixed length encoding: 4 bytes per code point
– Requires Unicode standards conformity
– Problem: memory consumption

 For a discussion about UTF-16 vs. UTF-32 see e.g.
http://mail.nl.linux.org/linux-utf8/2000-08/msg00025.html

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Introduction to Unicode: Unicode Implementations

• Java, Windows NT/2000/XP

– Basis: Unicode 2.x
– 16-bit code units (UCS-2 / UTF-16)
– Problem: Unicode 3.1 introduces characters which require two code units

per code point (UTF-16)

• GNU libc 2.x

– Basis: ISO 10646
– 32-bit code units (UCS-4)

• Python 1.6 and later

– Basis: Unicode 3.0
– Versions 1.6 – 2.1: 16-bit code units (UCS-2)
– Version 2.2+: 32-bit code units as configuration option (UCS-4)

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Introduction to Unicode: Comparing Unicode Strings

• Problem: There are multiple ways to encode a characters

Example: é = e + ´

• Solution: Normalization

– Recode Unicode strings to help finding a common ground for
comparisons (Unicode Annex #15)

– Different forms are available:
• FORM D: "Canonical Decomposition"
• FORM C: "Canonical Decomposition, followed by Canonical

Composition"
• Other forms for normalization

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Introduction to Unicode: Sorting Unicode Strings

• Problem: Sorting order is locale/application specific

Example:

German phone book sorting order: A ... AE ... Ä ... AB ... B ...

• Solution: Collation Support

– Recode Unicode strings into Collation Elements using a collation
table (see Unicode Annex #10)

– The Collation Elements can then be compared on an lexicographic
basis as is done with ASCII

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Introduction to Unicode: Conclusion

• Unicode ...

– solves real world problems

– reduces the time / money effort it takes to internationalize software

– simplifies managing text data

– is a mature and stable standard

– is open enough for everyone to adapt

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Python & Unicode: Part 2

1. Introduction to Unicode

2. Python‘s Path to Unicode

3. Using Unicode in Python

4. The Future

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Python‘s Path to Unicode: Motivation

• Why Unicode ?

– All modern programming languages will have to support Unicode
(sooner or later)

– See the "Introduction to Unicode"

• Possible paths to Unicode support:

1. Switch to Unicode as basic string type
problem: compatibility

2. Provide a separate Unicode type and
integrate it with the existing string type

problem: integration
>>> Guido van Rossum chose Path 2.

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Python‘s Path to Unicode: History

Background: In 1999 Hewlett-Packard worked on a project called "e-
speak" which was partly written in Python; for the i18n support they
needed a Unicode type, so they joined the Python Consortium and
contracted CNRI to have it implemented.

October 1999: Guido van Rossum subcontracted Fredrik Lundh to
write an Unicode aware regular expression engine (SRE) and Marc-
André Lemburg for the Unicode integration (deadline March 1st)

November 1999: First version of the Unicode integration proposal

March 2000: CVS checkin of the Unicode implementation and the SRE
engine

September 2000: CNRI releases Python 1.6 with Unicode support

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Python‘s Path to Unicode: Goals of the Implementation

• Integration:
Existing 8-bit strings and Unicode should integrate well
with the ultimate goal to use them interchangeably

• Ease of use:
Unicode should be just as easy to use as 8-bit strings

• Conversions:
An extensible codec (encoder / decoder) library should enable built-in
conversions between Unicode and other encodings

• Backward compatibility:
Should be maintained if at all possible

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Python‘s Path to Unicode: When Strings meet Unicode

• Unicode is "more" than an 8-bit string:

– coercion is always towards Unicode

• Problem: 8-bit strings don't carry any encoding information

– When coercing 8-bit strings to Unicode Python must make an
encoding assumption: the default encoding

– Default encoding is a startup run-time parameter

• Question:
Which default encoding to choose as default ?

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Python‘s Path to Unicode: Default Encoding: UTF-8 ...

• First approach:

– Use UTF-8 as default encoding

• Problems:

– Variable length encoding (1-4 bytes per code point)
– Indexing can easily fail
– len(s) not always == number of code points
– Slicing can break the encoding
– Common encodings like Latin-1 don't map well to UTF-8,

e.g. all accented characters require two bytes

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Python‘s Path to Unicode: ... or let the locale decide ...

• Second approach:

– Determine the encoding by querying the current locale

• Problems:

– Python code is not portable:
String literal in source code will receive different interpretations
depending on the platform

– Mixing Python code from different origins (locales) will likely fail at
run-time

– Some locales have more than one encoding in common use (e.g.
Russia)

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Python‘s Path to Unicode: ... or let the BDFL decide !

• Final decision by Guido van Rossum:

– Python's default for the default encoding is ASCII

• Problems:

– Coercion errors are very common for all non-ASCII applications
which mix 8-bit strings and Unicode

• Advantages:

– Helps identify the problem areas in programs
– Encourages: Explicit is better than implicit !
– Works well for ASCII-users

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Python‘s Path to Unicode: Features of the Implementation

• Integration:
Auto-coercion of 8-bit strings to Unicode based on the default encoding
(usually ASCII)

• Internals:
Uses UCS-2 for internal storage, based on Unicode 3.0
(UCS-4 is a configuration option since Python 2.2)

• Unicode Properties:
Provide access to the Unicode property database via string methods

• Conversions:
Provides codecs for most common (Western) encodings;
high quality codecs for Eastern encodings are available separately

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Python & Unicode: Part 3

1. Introduction to Unicode

2. Python‘s Path to Unicode

3. Using Unicode in Python

4. The Future

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Using Unicode in Python: Overview

• Creating Unicode objects in Python

• Converting Unicode to other encodings

• Working with files

• Writing a codec (encoder/decoder)

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Using Unicode in Python: Creating Unicode objects

• Unicode literals:

– u"Hello World !" (note the small u)

• Unicode from 8-bit strings:

– unicode("Hello World !", "latin-1")

• Unicode from files:

– import codecs
– f = codecs.open("myfile.txt", encoding="latin-1")
– data = f.read()

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Using Unicode in Python: Encoding Unicode

• Using the Unicode method .encode(data [,encoding]):

– u"ndré Le".encode("utf-8") (note the small u)

== "ndr\xc3\xa9 Le"

– u"ndré Le".encode("latin-1")

== "ndr\xe9 Le"

– u"ndré Le".encode() (default encoding)

UnicodeError: ASCII encoding error: ordinal not in range(128)

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Using Unicode in Python: Working with Files

• The codecs module provides Unicode aware wrappers around file
objects:

– import codecs

Read the data as UTF-8 and convert it to Unicode on-the-fly:
– file = codecs.open("myfile.txt", encoding="utf-8")
– data = file.read()

Process the Unicode data (here: using Unicode methods):
– data = data.upper()

Write back the Unicode as UTF-16
– file = codecs.open("myfile.txt", "wb", encoding="utf-16")
– file.write(data)

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Using Unicode in Python: Writing Codecs

• A Latin-1 to UTF-8 recoder written as codec (latin1_to_utf8.py):
import codecs

Encoding / decoding functions
def encode(latin1_data):

return unicode(latin1_data, 'latin-1').encode('utf-8'), len(latin1_data)
def decode(utf8data):

return unicode(utf8data, 'utf-8').encode('latin-1'), len(utf8data)

StreamCodecs
class Codec(codecs.Codec):

def encode(self, latin1_data): return encode(latin1_data)
def decode(self, utf8data): return decode(utf8data)

class StreamWriter(Codec,codecs.StreamWriter):
pass

class StreamReader(Codec,codecs.StreamReader):
pass

Codec registry entry point
def getregentry():

return (encode, decode, StreamReader, StreamWriter)

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Python & Unicode: Part 4

1. Introduction to Unicode

2. Python‘s Path to Unicode

3. Using Unicode in Python

4. The Future

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

The Future: Unicode Support in Python 2.2 and later

• Internals:
Provide support for UCS-4 to fully support Unicode 3.1and later

• Unicode Algorithms:
Implement the Unicode collation algorithm, the compression algorithm
and the normalization algorithms

• Unicode Helpers:
Add helpers which allow indexing Unicode objects based on characters,
code points, words and lines

• Conversions:
Add fast codecs for Eastern encodings to the Python core (but as
separate download)

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Questions...

Thank you for your time.

(c) 2002 EGENIX.COM Software, Skills and Services GmbH, info@egenix.com EuroPython Confrence 2002

Python & Unicode

Contact

eGenix.com Software, Skills and Services GmbH
Marc-André Lemburg
Pastor-Löh-Str. 48
D-40764 Langenfeld
Germany

eMail: mal@egenix.com
Phone: +49 211 9304112
Fax: +49 211 3005250
Web: http://www.egenix.com/

mailto:mal@egenix.com
http://www.egenix.com/

	Python and Unicode
	Python & Unicode: Overview
	Python & Unicode: Part 1
	Introduction to Unicode: The Problem
	Introduction to Unicode: First Approximations
	Introduction to Unicode: The Unicode Consortium Solution
	Introduction to Unicode: Other Solutions
	Introduction to Unicode: What is a Character ?
	Introduction to Unicode: Statistics
	Introduction to Unicode: Connecting to the Real World
	Introduction to Unicode: Encoding Issues (Part 1)
	Introduction to Unicode: Encoding Issues (Part 2)
	Introduction to Unicode: Internal Storage Formats (Part 1)
	Introduction to Unicode: Internal Storage Formats (Part 2)
	Introduction to Unicode: Unicode Implementations
	Introduction to Unicode: Comparing Unicode Strings
	Introduction to Unicode: Sorting Unicode Strings
	Introduction to Unicode: Conclusion
	Python & Unicode: Part 2
	Python‘s Path to Unicode: Motivation
	Python‘s Path to Unicode: History
	Python‘s Path to Unicode: Goals of the Implementation
	Python‘s Path to Unicode: When Strings meet Unicode
	Python‘s Path to Unicode: Default Encoding: UTF-8 ...
	Python‘s Path to Unicode: ... or let the locale decide ...
	Python‘s Path to Unicode: ... or let the BDFL decide !
	Python‘s Path to Unicode: Features of the Implementation
	Python & Unicode: Part 3
	Using Unicode in Python: Overview
	Using Unicode in Python: Creating Unicode objects
	Using Unicode in Python: Encoding Unicode
	Using Unicode in Python: Working with Files
	Using Unicode in Python: Writing Codecs
	Python & Unicode: Part 4
	The Future: Unicode Support in Python 2.2 and later
	Questions...
	Contact

