Combining asyncio und threads
in a single application

PyCon JP 2020 - 28.08.2020
Online

Joining from Dusseldorf, Germany

Marc-André Lemburg :: eGenix.com GmbH

mailto:info@egenix.com

Speaker Introduction

* Marc-André Lemburg

Python since 1994

Studied Mathematics

CEO eGenix.com GmbH

Consult as Interim CTO / Senior Software Architect
EuroPython Society Chair

Python Software Foundation Fellow

Python Core Developer

Based in Diisseldorf, Germany

More: http://malemburg.com

mailto:info@egenix.com
http://malemburg.com/

Terminology: Synchronous / Threaded / Asynchronous

* Synchronous

— All instructions are executed one after another
— 1/O and similar external resources cause execution to wait

— Timing is not a problem. Everything is deterministic.

— Problem: Waiting is not an efficient use of resources :-)

mailto:info@egenix.com
https://pixabay.com/photos/animals-waterfowl-ducks-young-737407/

Terminology: Synchronous / Threaded / Asynchronous

* Threaded

— Several synchronous parts of the program run in parallel,
using OS threads

— Execution is controlled by the OS, not the application
— Threads are often assigned to different CPU cores

— Problem: Sequence of execution is not necessarily deterministic
— Problem: Unexpected delays can happen o, -
— Problem: Sharing data is hard - requires locks

Problem: OS overhead

Advantage: Efficient use of resources

mailto:info@egenix.com
https://pixabay.com/photos/horse-horse-race-race-animal-3880449/

Terminology: Synchronous / Threaded / Asynchronous

* Asynchronous

— While some parts of the program wait for e.g. /O,
other parts can continue to run

— Execution is controlled by the application, not the OS
— This is not the same as “running in parallel” (threading)

— Problem: Sequence of execution is not necessarily deterministic
— Problem: Unexpected delays can happen '
— Problem: Scope limited to a single core

Problem

mailto:info@egenix.com
https://pixabay.com/photos/horse-horse-race-race-animal-3880449/

Python: Global Interpreter Lock (GIL)

* The GIL makes sure that only one thread runs Python byte code at any
point in time

— Only released for 1/O or other /+ Take the GIL.
long running tasks...

— ... and then only if no Python
tstate must be non-MULL. */
code can be run static void

take_gil(PyThreadState *tstate)
{

* Threads can only share the ot e~ e
Python Interpreter, not use it
simultaneously

The function saves errno at entry and restores its value at exit.

https://github.com/python/cpython/blob/master/Python/ceval_gil.h

— Result: Even if you have multiple Cores in the CPUs,
only one thread can run Python byte code

— All other threads which want to run Python code have to wait

mailto:info@egenix.com

Goal: Use CPUs as efficiently as possible with Python

Examples for asynchronous Python applications

— Web Server (Tornado, Starlette)
— Chat Server (Discord)
— loT Server (Home Assistant)

Examples for synchronous / threaded Python applications

— Database connections
— Many non-Python tools
— Embedded third party libraries

Existing synchronous / threaded applications should remain usable,
but with the benefits of using asynchronous execution
where possible

mailto:info@egenix.com

Python: Threaded code / multiple cores/threads

Thread 1 Thread 2 Thread 3

* Threaded + multiple cores/threads = .
Much waiting

Waiting

— Threads need to wait for the GIL Wa:rl;
Delays due to 1/O ono
— Not much parallel work
(only while doing 1/O)

Task 1 Task2 Task3

mailto:info@egenix.com

Python: Threaded code / multiple cores/threads

Thread 1 Thread 2 Thread 3 Thread 1 Thread 2 Thread 3 Thread 1 Thread 2 Thread 3 Thread 1 Thread 2 Thread 3

Running
Python

Ll

Waiting
on GIL

I mEb

E B EEE = m)

Waiting
on /O

Task 1 Task2 Task 3 Task 1 Task2 Task3 Task2 Task3 Thread 1,2, 3

mailto:info@egenix.com

Python: Asynchronous to saturate a single core/thread

Process / Thread / Core

* Asynchronous + one thread/process = = = _—
less waiting, but only one core o

All application parts have to participate L cvecuton
Active passing of control (cooperative) o
Less overhead compared to threads
No parallel work, only simulated
More efficient use of the core

mailto:info@egenix.com

Python: Extend asynchronous to all cores via processes

* Asynchronous + multiple processes = less waiting, all cores

All application parts have to participate
Active passing of control (cooperative)
Needs more RAM

Recommendation: 1-2 Processes per Core
Partially parallel work

More efficient use of the CPU

Running
Python
I
execution
. Waiting
on /0

mailto:info@egenix.com

Python: Saturate other cores with external code

* Asynchronous + multiple threads = less waiting, more cores

Thread 1

All application parts have to participate <

Active passing of control (cooperative) -EE

Parallel work between Python / external code
More efficient use of the CPU

Good approach when embedding
calculation intense packages or
external tools

Running
Python

Running
other code

execution

Waiting
on VO

mailto:info@egenix.com

async + await: Quick intro

* (Coroutines

— Like “Subroutines”, but routine can internally give up
control to the calling function

* New keywords in Python 3.5

— Make working with Coroutines a lot easier
— async def task() - defines a Coroutine
— await io_call() - gives up control, until io_call() responds

* Package asyncio

— Provides the event loop to run coroutines

— Many other helpers to run coroutines

mailto:info@egenix.com

async + await: Example

Synchronous Asynchronous

import asyncio # Asynchron
import time async def task _async(x):
print (f'Task async: {x} working')}
Synchron awalt asyncio.sleep(2)
def task_sync(x): print {f'Task async: {x} done")
print {f'Task sync: {x} working')
time.sleep(2) # Call task
print (f'Task sync: {x} done') tasks = (task _async('Example 2"},
task_async{ ' Example 3"},

[T s I I ¥y R S W I S I Y

=
[ax]

task _sync('Example 1))
async def main():

print ("-'%72) await asyncio.gather(*tasks)
asyncio.run{main(})

il
Fad =

mailto:info@egenix.com

async + await: Example

Synchronous Asynchronous

import asyncio # Asynchron
import time async def task _async(x):
print (f'Task async: {x} working')}
Synchron awalt asyncio.sleep(2)
def task_sync(x): print {f'Task async: {x} done")
print {f'Task c: {x} working')
time.sleep(2) # Call task
print (f'Task sync: {x} done') tasks = (task _async('Example 2"},
task_async{ ' Example 3"},

[T s I I ¥y R S W I S I Y

=
[ax]

task _sync('Example 1))
async def main():

print ("-'%72) await asyncio.gather(*tasks)
asyncio.run{main(})

il
Fad =

mailto:info@egenix.com

async + await: Example

Synchronous Asynchronous

import asyncio # Asynchron
import time async def task _async(x):
print (f'Task async: {x} working')}
Synchron awalt asyncio.sleep(2)
def task_sync(x): print {f'Task async: {x} done")
print {f'Task sync: {x} working')
time.sleep(2) # Call task
print (f'Task sync: {x} done') tasks = (task _async('Example 2"},
task_async{ ' Example 3"},

[T s I I ¥y R S W I S I Y

=
[ax]

task _sync('Example 1))
async def main():

print ("-'%72) await asyncio.gather(*tasks)
asyncio.run{main(})

il
Fad =

mailto:info@egenix.com

Async doesn’t like blocking code

* Task objects are run in an Event Loop

— A task runs until it hits the next await,
control then goes back to the Event Loop

— Only works, if the code collaborates,
doesn’t unnecessarily blocks and
gives back control

mailto:info@egenix.com
https://pixabay.com/photos/fairground-lights-amusement-park-1149626/

Async doesn’t like blocking code

* Blocking Code

— Itis possible to run blocking code in a separate
thread, so that it doesn’t prevent the Event Loop
from continuing with other tasks:

loop.run_in_executor ()

— concurrent.futures.ThreadPoolExecutor
provides such an “Executor”

mailto:info@egenix.com
https://pixabay.com/photos/fairground-lights-amusement-park-1149626/

Example: Discord Bot, using VLC

* ldea: Take snapshots of
YouTube streams and
send them to Discord as
preview (EuroPython
2020)

* Implementation: Discord
Bot using Discord.py
(async) and python-vlc
(threaded)

mailto:info@egenix.com

Discord.py async, VLC sync

HH# Bot

class MyClient{discord.Client]:
ThreadPoolExecutor used for running WLC players Discord.py API uses async

thread_executor = None

VLC plavers dict, mapping filename to wlc plaver instance

vlc_players = None We start the VLC clients
asyne def on_connectiself); / USing a separate thread

%FE&EE TgreadExecutnr c readPoo] . t

self. thread_executor = concurrent.futures. ThreadPoolExecutor
tax_workers=Max_THREADS, executor
J

Init client wars
self.vlc_plavers = {3

async def on_ready(self):
print{'Logged on as', self.user)

async def on_messagelself, message):
if message. author = self.user:

don't respond to ourselves

return

mailto:info@egenix.com

Discord.py Commands

Bot commands each start a
separate aync method

elif command = 'wakch':

if drei n_check : /" 7 .
! “g;a?tmlﬂaﬁng%.ggﬁgﬁaga need admin rights to run this command. ') WatCh Starts the VLC Cllent

return

if ngnga?ggifzanne].send('flcurrmand heeds & URL as arguwent. ']/ Und the Streaming Of the

] return[: h 't
url = args[o

print ('Starting to stream %5 picture to %s' % (url, channell) Snaps O S
Start streaming

await self.strearm_url (channel, url)

mailto:info@egenix.com

Start VLC, then loop to send snapshots

asyne def strean_url{self, channel, url, interval=15):
prey_messages = []
filename = 'snapshot—%s.pna’ % <lean_namefurll
if Fi}ename nuE in 591f.v1c_p1ayers:k{
player_task = asyncio.create_tas . . .
b self. run_vlc_playeriurl, filename=filenamel) \ ThIS IS Where the VLC C||ent
vhile True:
if os.path.exists{filenamal: -
print ('Sending stream picture %s to %s' &% (IS Started ds d taSk
filename, channell)
embed = discord.Embed(
title="Holy Grail Track at %s' % timestamp(D,

description='Talk title (if possiblel’, Once Started, we run an

url="https://zoom.uss",

joerraeneas. / endless loop send snapshots
embed. set_imagefurl="attachment://snapshot.png') .
to the Discord channel

try:

message = await channel.send(
etmbed=embed,
file=discord. File(filenamel)

if len(prev_mescages) = G:
Keep 6 images around
nldest_message = prev_messages.pop(0)
await oldest_message.delete()

prev_messages.appendimessage)

except NETWORK_EXCEPTIONS as reason:
print 'Ignoring network error: %s' % reason)d
await asvncio.sleep(intervall

mailto:info@egenix.com

Streaming is done in a separate thread, parallel to the bot

def start_vlc_player(self, url): The methOd

player = wideo_plaver.\ideoPlayer(]

player.play_stream{urll 4 .Start_VlC_player() iS

playver.wait_until_playing()

return player SynCh ronous

async def run_vlc_playeriself, url, interval=5, filename='snapshot.png'):

flat Start WLC : 0 l . . h d

oop = asyhcio.get_running_loop

player = await loop.run_in_executor(t IS runina Separate t rea /
self. thread_executor,

3$H.5tart_v1c_p1ayer, - managed by
the .thread executor

self.vlc_plavers[filename] = plaver
Loop and take snapshots

try:
vwhile True:

- B o ean ey 11520, heTSht=1050) g SnapShOtS are taken
inally:
f odHM Could make thi 11
31?yerhg:g%_fg@{gam{;i;:wc] we regularly after the player
el seir.viC_players[(T1Iename h
as started

mailto:info@egenix.com

Discord Bot (async), using VLC (sync) in

the same process

[>] vlc-stream-screenshots : make — Konsole

drwsxr—xr—x 2 lemburg lemburg 48 May 17:37 __pycache__

drwsr—sr—= 7 lemburg Temburg 86 May 13:41 pyeny

—rw-r—r— 1 lemburg Temburg 43 May 16:13 requirements, txt

—rw—r—r— 1 lemburg lemburg 32 May 13:50

—tw—r—r— 1 lemburg lemburg 1148825 21:50 snapshot-httpswwwyoutubecomwatchvza
0Cv3kXFdw . png

—tw—r—r— 1 lemburg lemburg 1979725 May 19:19 snapshot-httpswwy . youtube . convatchy
uF2GhMaagog. png

—tw—r—r— 1 lemhurg lemburg 761845 Tun 14:17 snapshot-httpswwwyoutubecomwatchysm
+39hMI9s. png

—rw—r—r— 1 lemhurg lemburg 854206 14:10 snapshot.png

—rwr—xr—x 1 lemburg lemburg 802 May 19:36 streamwatcher.py

—rwsr=sr=x 1 lemburg Temburg 77 May 11:29 streamwatcher.py~

—rwsr—sr—s 1 lemburg Temburg 775 May 16:44 ctreamwatch. py~

—rw—r—r— 1 lemburg lemburg 4448 May 15:48 video_player.py

—tw—r—r— 1 lemburg lemburg 4445 May 15:39

projects/vlc-stream-screenshots» make run

Logged on as test—streammatchert 753

Received message '!clear’ from malemburg?sze on channel bot—test—channel

Clearing channel bot-test—channel

Received message 'lwatch https:/fwms. youtube. comfwatch?v=wmr33hMI_95" from malemburgh
7326 on channel hot-test—channel

Starting to stream https:/ . youtube. comfwatchPy=umr39hMI_9s picture to bot-test—ch
annel

Send}'ng ctream picture snapshot-httpswawyoutubecomwatchyxmr3shMI9s.png to bot—test—ch
anne

Failed to open WOPAU backend T1ibvdpau_nvidia.so: cannot open shared object file: No s
uch file or directory

Send}'ng stream picture snapshot-httpswwwyoutubecomatchysmr3ahMI9s. png to bot-test—ch
anne

Send}'ng stream picture snapshot—-httpsweyoutubecomatchyvsmradhMI9s. png to bot-test—ch
anne

Sending stream picture snapshot-httpswasyoutubecomatchvemr3dhMI9s. png to hot-test—ch
annel

Send}'ng stream picture snapshot-httpswayoutubecomatchwrmr33hMI9s. png to bot-test—ch
anne

VLC media player

mailto:info@egenix.com

Thank you for your attention !

mailto:info@egenix.com

Contact

eGenix.com Software, Skills and Services GmbH
Marc-André Lemburg

Pastor-Loh-Str. 48

D-40764 Langenfeld

Germany

eMail: mal@egenix.com
Phone: +49 211 9304112
Fax: +49 211 3005250

Web: http://www.egenix.com/

mailto:info@egenix.com
mailto:mal@egenix.com
http://www.egenix.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

