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Speaker Introduction

• Marc-André Lemburg

– Python since 1994
– Studied Mathematics
– CEO eGenix.com GmbH
– Consult as Interim CTO / Senior Software Architect
– EuroPython Society Chair
– Python Software Foundation Fellow
– Python Core Developer
– Based in Düsseldorf, Germany
– More: http://malemburg.com

mailto:info@egenix.com
http://malemburg.com/


3:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

Terminology: Synchronous / Threaded / Asynchronous

• Synchronous
– All instructions are executed one after another
– I/O and similar external resources cause execution to wait

– Timing is not a problem. Everything is deterministic.

– Problem: Waiting is not an efficient use of resources :-)

mailto:info@egenix.com
https://pixabay.com/photos/animals-waterfowl-ducks-young-737407/


4:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

Terminology: Synchronous / Threaded / Asynchronous

• Threaded
– Several synchronous parts of the program run in parallel,

using OS threads
– Execution is controlled by the OS, not the application
– Threads are often assigned to different CPU cores

– Problem: Sequence of execution is not necessarily deterministic
– Problem: Unexpected delays can happen
– Problem: Sharing data is hard – requires locks
– Problem: OS overhead

– Advantage: Efficient use of resources

mailto:info@egenix.com
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Terminology: Synchronous / Threaded / Asynchronous

• Asynchronous
– While some parts of the program wait for e.g. I/O,

other parts can continue to run
– Execution is controlled by the application, not the OS
– This is not the same as “running in parallel“ (threading)

– Problem: Sequence of execution is not necessarily deterministic
– Problem: Unexpected delays can happen
– Problem: Scope limited to a single core
– Problem: All parts of the code have to participate

– Advantage: Efficient use of resources

mailto:info@egenix.com
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Python: Global Interpreter Lock (GIL)

• The GIL makes sure that only one thread runs Python byte code at any 
point in time

– Only released for I/O or other
long running tasks...

– … and then only if no Python
code can be run

• Threads can only share the
Python Interpreter, not use it
simultaneously

– Result: Even if you have multiple Cores in the CPUs, 
only one thread can run Python byte code

– All other threads which want to run Python code have to wait

https://github.com/python/cpython/blob/master/Python/ceval_gil.h

mailto:info@egenix.com
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Goal: Use CPUs as efficiently as possible with Python

• Examples for asynchronous Python applications
– Web Server (Tornado, Starlette)
– Chat Server (Discord)
– IoT Server (Home Assistant)

• Examples for synchronous / threaded Python applications
– Database connections
– Many non-Python tools
– Embedded third party libraries

• Existing synchronous / threaded applications should remain usable,
but with the benefits of using asynchronous execution
where possible

mailto:info@egenix.com
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Python: Threaded code / multiple cores/threads

• Threaded + multiple cores/threads = 
Much waiting

– Threads need to wait for the GIL
Delays due to I/O

– Not much parallel work
(only while doing I/O)

mailto:info@egenix.com
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Python: Threaded code / multiple cores/threads

mailto:info@egenix.com


10:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

Python: Asynchronous to saturate a single core/thread

• Asynchronous + one thread/process =
less waiting, but only one core

– All application parts have to participate
– Active passing of control (cooperative)
– Less overhead compared to threads
– No parallel work, only simulated
– More efficient use of the core

mailto:info@egenix.com
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Python: Extend asynchronous to all cores via processes

• Asynchronous + multiple processes = less waiting, all cores
– All application parts have to participate
– Active passing of control (cooperative)
– Needs more RAM
– Recommendation: 1-2 Processes per Core
– Partially parallel work
– More efficient use of the CPU

mailto:info@egenix.com
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Python: Saturate other cores with external code

• Asynchronous + multiple threads = less waiting, more cores
– All application parts have to participate
– Active passing of control (cooperative)
– Parallel work between Python / external code
– More efficient use of the CPU
– Good approach when embedding

calculation intense packages or
external tools

mailto:info@egenix.com
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async + await: Quick intro

• Coroutines
– Like “Subroutines”, but routine can internally give up

control to the calling function

• New keywords in Python 3.5
– Make working with Coroutines a lot easier
– async def task() - defines a Coroutine
– await io_call() - gives up control, until io_call() responds

• Package asyncio
– Provides the event loop to run coroutines
– Many other helpers to run coroutines

mailto:info@egenix.com
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async + await: Example

Synchronous Asynchronous

mailto:info@egenix.com
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async + await: Example

Synchronous Asynchronous
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async + await: Example

Synchronous Asynchronous
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Async doesn’t like blocking code

• Task objects are run in an Event Loop
– A task runs until it hits the next await,

control then goes back to the Event Loop

– Only works, if the code collaborates,
doesn’t unnecessarily blocks and
gives back control

mailto:info@egenix.com
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Async doesn’t like blocking code

• Blocking Code
– It is possible to run blocking code in a separate

thread, so that it doesn’t prevent the Event Loop
from continuing with other tasks:

loop.run_in_executor()

– concurrent.futures.ThreadPoolExecutor
provides such an “Executor”

mailto:info@egenix.com
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Example: Discord Bot, using VLC

• Idea: Take snapshots of 
YouTube streams and 
send them to Discord as 
preview (EuroPython 
2020)

• Implementation: Discord 
Bot using Discord.py 
(async) and python-vlc 
(threaded)

mailto:info@egenix.com
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Discord.py async, VLC sync

Discord.py API uses async

We start the VLC clients 
using a separate thread 
executor

mailto:info@egenix.com
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Discord.py Commands

Bot commands each start a 
separate aync method

“watch“ starts the VLC client 
und the streaming of the 
snapshots

mailto:info@egenix.com
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Start VLC, then loop to send snapshots

This is where the VLC client 
is started as a task

Once started, we run an 
endless loop send snapshots 
to the Discord channel

mailto:info@egenix.com
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Streaming is done in a separate thread, parallel to the bot

The method 
.start_vlc_player() is
synchronous

It is run in a separate thread, 
managed by 
the .thread_executor

Snapshots are taken 
regularly after the player
has started

mailto:info@egenix.com
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Discord Bot (async), using VLC (sync) in the same process
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Thank you for your attention !

Beautiful is better than ugly.
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Contact

eGenix.com Software, Skills and Services GmbH
Marc-André Lemburg
Pastor-Löh-Str. 48
D-40764 Langenfeld
Germany

eMail: mal@egenix.com
Phone: +49 211 9304112
Fax: +49 211 3005250
Web: http://www.egenix.com/ 
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