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Terminology: Synchronous / Threaded / Asynchronous

* Synchronous

— All instructions are executed one after another
— 1/O and similar external resources cause execution to wait

— Timing is not a problem. Everything is deterministic.

— Problem: Waiting is not an efficient use of resources :-)
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Terminology: Synchronous / Threaded / Asynchronous

* Threaded

— Several synchronous parts of the program run in parallel,
using OS threads

— Execution is controlled by the OS, not the application
— Threads are often assigned to different CPU cores

— Problem: Sequence of execution is not necessarily deterministic
— Problem: Unexpected delays can happen o, -
— Problem: Sharing data is hard - requires locks

Problem: OS overhead

Advantage: Efficient use of resources
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Terminology: Synchronous / Threaded / Asynchronous

* Asynchronous

— While some parts of the program wait for e.g. /O,
other parts can continue to run

— Execution is controlled by the application, not the OS
— This is not the same as “running in parallel” (threading)

— Problem: Sequence of execution is not necessarily deterministic
— Problem: Unexpected delays can happen '
— Problem: Scope limited to a single core

Problem
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Python: Global Interpreter Lock (GIL)

* The GIL makes sure that only one thread runs Python byte code at any
point in time

— Only released for 1/O or other /+ Take the GIL.
long running tasks...

— ... and then only if no Python
tstate must be non-MULL. */
code can be run static void

take_gil(PyThreadState *tstate)
{

* Threads can only share the ot e~ e
Python Interpreter, not use it
simultaneously

The function saves errno at entry and restores its value at exit.

https://github.com/python/cpython/blob/master/Python/ceval_gil.h

— Result: Even if you have multiple Cores in the CPUs,
only one thread can run Python byte code

— All other threads which want to run Python code have to wait
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Goal: Use CPUs as efficiently as possible with Python

Examples for asynchronous Python applications

— Web Server (Tornado, Starlette)
— Chat Server (Discord)
— loT Server (Home Assistant)

Examples for synchronous / threaded Python applications

— Database connections
— Many non-Python tools
— Embedded third party libraries

Existing synchronous / threaded applications should remain usable,
but with the benefits of using asynchronous execution
where possible
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Python: Threaded code / multiple cores/threads

Thread 1 Thread 2 Thread 3

* Threaded + multiple cores/threads = .
Much waiting

Waiting

— Threads need to wait for the GIL Wa:rl;
Delays due to 1/O ono
— Not much parallel work
(only while doing 1/O)

Task 1 Task2  Task3
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Python: Threaded code / multiple cores/threads

Thread 1 Thread 2 Thread 3 Thread 1 Thread 2 Thread 3 Thread 1 Thread 2 Thread 3 Thread 1 Thread 2 Thread 3

Running
Python

Ll

Waiting
on GIL

I mEb

E B EEE = m)

Waiting
on /O

Task 1 Task2  Task 3 Task 1 Task2  Task3 Task2  Task3 Thread 1,2, 3



mailto:info@egenix.com

Python: Asynchronous to saturate a single core/thread

Process / Thread / Core

* Asynchronous + one thread/process = = = _—
less waiting, but only one core o

All application parts have to participate L cvecuton
Active passing of control (cooperative) o
Less overhead compared to threads
No parallel work, only simulated
More efficient use of the core
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Python: Extend asynchronous to all cores via processes

* Asynchronous + multiple processes = less waiting, all cores

All application parts have to participate
Active passing of control (cooperative)
Needs more RAM

Recommendation: 1-2 Processes per Core
Partially parallel work

More efficient use of the CPU

Running
Python
I
execution
. Waiting
on /0
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Python: Saturate other cores with external code

* Asynchronous + multiple threads = less waiting, more cores

Thread 1

All application parts have to participate <

Active passing of control (cooperative) -EE

Parallel work between Python / external code
More efficient use of the CPU

Good approach when embedding
calculation intense packages or
external tools

Running
Python

Running
other code

execution

Waiting
on VO
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async + await: Quick intro

* (Coroutines

— Like “Subroutines”, but routine can internally give up
control to the calling function

* New keywords in Python 3.5

— Make working with Coroutines a lot easier
— async def task() - defines a Coroutine
— await io_call() - gives up control, until io_call() responds

* Package asyncio

— Provides the event loop to run coroutines

— Many other helpers to run coroutines
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async + await: Example

Synchronous Asynchronous

import asyncio # Asynchron
import time async def task _async(x):
print (f'Task async: {x} working')}
# Synchron awalt asyncio.sleep(2)
def task_sync(x): print {f'Task async: {x} done")
print {f'Task sync: {x} working')
time.sleep(2) # Call task
print (f'Task sync: {x} done') tasks = (task _async('Example 2"},
task_async{ ' Example 3"},

[T s I I ¥y R S W I S I Y

=
[ax]

task _sync('Example 1) )
async def main():

print ("-'%72) await asyncio.gather(*tasks)
asyncio.run{main(})

il
Fad =
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Async doesn’t like blocking code

* Task objects are run in an Event Loop

— A task runs until it hits the next await,
control then goes back to the Event Loop

— Only works, if the code collaborates,
doesn’t unnecessarily blocks and
gives back control
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Async doesn’t like blocking code

* Blocking Code

— Itis possible to run blocking code in a separate
thread, so that it doesn’t prevent the Event Loop
from continuing with other tasks:

loop.run_in_executor ()

— concurrent.futures.ThreadPoolExecutor
provides such an “Executor”
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Example: Discord Bot, using VLC

* ldea: Take snapshots of
YouTube streams and
send them to Discord as
preview (EuroPython
2020)

* Implementation: Discord
Bot using Discord.py
(async) and python-vlc
(threaded)
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Discord.py async, VLC sync

HH# Bot

class MyClient{discord.Client]:
# ThreadPoolExecutor used for running WLC players Discord.py API uses async

thread_executor = None

# VLC plavers dict, mapping filename to wlc plaver instance

vlc_players = None We start the VLC clients
asyne def on_connectiself); / USing a separate thread

# %FE&EE TgreadExecutnr c readPoo] . t

self. thread_executor = concurrent.futures. ThreadPoolExecutor
tax_workers=Max_THREADS, executor
J

# Init client wars
self.vlc_plavers = {3

async def on_ready(self):
print{'Logged on as', self.user)

async def on_messagelself, message):
if message. author = self.user:

# don't respond to ourselves

return
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Discord.py Commands

Bot commands each start a
separate aync method

elif command = 'wakch':

if drei n_check : /" 7 .
! “g;a?tmlﬂaﬁng%.ggﬁgﬁaga need admin rights to run this command. ') WatCh Starts the VLC Cllent

return

if ngnga?ggifzanne].send('flcurrmand heeds & URL as arguwent. ']/ Und the Streaming Of the

] return[ : h 't
url = args[o

print ('Starting to stream %5 picture to %s' % (url, channell) Snaps O S
# Start streaming

await self.strearm_url (channel, url)
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Start VLC, then loop to send snapshots

asyne def strean_url{self, channel, url, interval=15):
prey_messages = []
filename = 'snapshot—%s.pna’ % <lean_namefurll
if Fi}ename nuE in 591f.v1c_p1ayers:k{
player_task = asyncio.create_tas . . .
b self. run_vlc_playeriurl, filename=filenamel) \ ThIS IS Where the VLC C||ent
vhile True:
if os.path.exists{filenamal: -
print ('Sending stream picture %s to %s' &% ( IS Started ds d taSk
filename, channell)
embed = discord.Embed(
title="Holy Grail Track at %s' % timestamp(D,

description='Talk title (if possiblel’, Once Started, we run an

url="https://zoom.uss",

joerraeneas. / endless loop send snapshots
embed. set_imagefurl="attachment://snapshot.png') .
to the Discord channel

try:

message = await channel.send(
etmbed=embed,
file=discord. File(filenamel)

if len(prev_mescages) = G:
# Keep 6 images around
nldest_message = prev_messages.pop(0)
await oldest_message.delete()

prev_messages.appendimessage)

except NETWORK_EXCEPTIONS as reason:
print 'Ignoring network error: %s' % reason)d
await asvncio.sleep(intervall
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Streaming is done in a separate thread, parallel to the bot

def start_vlc_player(self, url): The methOd

player = wideo_plaver.\ideoPlayer(]

player.play_stream{urll 4 .Start_VlC_player() iS

playver.wait_until_playing()

return player SynCh ronous

async def run_vlc_playeriself, url, interval=5, filename='snapshot.png'):

flat Start WLC : 0 l . . h d

oop = asyhcio.get_running_loop

player = await loop.run_in_executor( t IS runina Separate t rea /
self. thread_executor,

3$H.5tart_v1c_p1ayer, - managed by
the .thread executor

self.vlc_plavers[filename] = plaver
# Loop and take snapshots

try:
vwhile True:

- B o ean ey 11520, heTSht=1050) g SnapShOtS are taken
inally:
f odHM Could make thi 11
31?yerhg:g%_fg@{gam{;i;:wc ] we regularly after the player
el seir.viC_players[(T1Iename h
as started
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Discord Bot (async), using VLC (sync) in

the same process

[>] vlc-stream-screenshots : make — Konsole

drwsxr—xr—x 2 lemburg lemburg 48 May 17:37 __pycache__

drwsr—sr—= 7 lemburg Temburg 86 May 13:41 pyeny

—rw-r—r— 1 lemburg Temburg 43 May 16:13 requirements, txt

—rw—r—r— 1 lemburg lemburg 32 May 13:50

—tw—r—r— 1 lemburg lemburg 1148825 21:50 snapshot-httpswwwyoutubecomwatchvza
0Cv3kXFdw . png

—tw—r—r— 1 lemburg lemburg 1979725 May 19:19 snapshot-httpswwy . youtube . convatchy
uF2GhMaagog. png

—tw—r—r— 1 lemhurg lemburg 761845 Tun 14:17 snapshot-httpswwwyoutubecomwatchysm
+39hMI9s. png

—rw—r—r— 1 lemhurg lemburg 854206 14:10 snapshot.png

—rwr—xr—x 1 lemburg lemburg 802 May 19:36 streamwatcher.py

—rwsr=sr=x 1 lemburg Temburg 77 May 11:29 streamwatcher.py~

—rwsr—sr—s 1 lemburg Temburg 775 May 16:44 ctreamwatch. py~

—rw—r—r— 1 lemburg lemburg 4448 May 15:48 video_player.py

—tw—r—r— 1 lemburg lemburg 4445 May 15:39

projects/vlc-stream-screenshots» make run

Logged on as test—streammatchert 753

Received message '!clear’ from malemburg?sze on channel bot—test—channel

Clearing channel bot-test—channel

Received message 'lwatch https:/fwms. youtube. comfwatch?v=wmr33hMI_95" from malemburgh
7326 on channel hot-test—channel

Starting to stream https:/ . youtube. comfwatchPy=umr39hMI_9s picture to bot-test—ch
annel

Send}'ng ctream picture snapshot-httpswawyoutubecomwatchyxmr3shMI9s.png to bot—test—ch
anne

Failed to open WOPAU backend T1ibvdpau_nvidia.so: cannot open shared object file: No s
uch file or directory

Send}'ng stream picture snapshot-httpswwwyoutubecomatchysmr3ahMI9s. png to bot-test—ch
anne

Send}'ng stream picture snapshot—-httpsweyoutubecomatchyvsmradhMI9s. png to bot-test—ch
anne

Sending stream picture snapshot-httpswasyoutubecomatchvemr3dhMI9s. png to hot-test—ch
annel

Send}'ng stream picture snapshot-httpswayoutubecomatchwrmr33hMI9s. png to bot-test—ch
anne

VLC media player
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Thank you for your attention !
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Contact
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Marc-André Lemburg

Pastor-Loh-Str. 48
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Germany

eMail: mal@egenix.com
Phone: +49 211 9304112
Fax: +49 211 3005250

Web: http://www.egenix.com/
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