
(c) 2020 eGenix.com Software, Skills and Services GmbH, info@egenix.com

PyCon JP 2020 – 28.08.2020PyCon JP 2020 – 28.08.2020
OnlineOnline

Joining from Düsseldorf, GermanyJoining from Düsseldorf, Germany

Marc-André Lemburg :: eGenix.com GmbH

Combining asyncio und threads 
in a single application

mailto:info@egenix.com


2:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

Speaker Introduction

• Marc-André Lemburg

– Python since 1994
– Studied Mathematics
– CEO eGenix.com GmbH
– Consult as Interim CTO / Senior Software Architect
– EuroPython Society Chair
– Python Software Foundation Fellow
– Python Core Developer
– Based in Düsseldorf, Germany
– More: http://malemburg.com

mailto:info@egenix.com
http://malemburg.com/


3:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

Terminology: Synchronous / Threaded / Asynchronous

• Synchronous
– All instructions are executed one after another
– I/O and similar external resources cause execution to wait

– Timing is not a problem. Everything is deterministic.

– Problem: Waiting is not an efficient use of resources :-)

mailto:info@egenix.com
https://pixabay.com/photos/animals-waterfowl-ducks-young-737407/


4:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

Terminology: Synchronous / Threaded / Asynchronous

• Threaded
– Several synchronous parts of the program run in parallel,

using OS threads
– Execution is controlled by the OS, not the application
– Threads are often assigned to different CPU cores

– Problem: Sequence of execution is not necessarily deterministic
– Problem: Unexpected delays can happen
– Problem: Sharing data is hard – requires locks
– Problem: OS overhead

– Advantage: Efficient use of resources

mailto:info@egenix.com
https://pixabay.com/photos/horse-horse-race-race-animal-3880449/


5:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

Terminology: Synchronous / Threaded / Asynchronous

• Asynchronous
– While some parts of the program wait for e.g. I/O,

other parts can continue to run
– Execution is controlled by the application, not the OS
– This is not the same as “running in parallel“ (threading)

– Problem: Sequence of execution is not necessarily deterministic
– Problem: Unexpected delays can happen
– Problem: Scope limited to a single core
– Problem: All parts of the code have to participate

– Advantage: Efficient use of resources

mailto:info@egenix.com
https://pixabay.com/photos/horse-horse-race-race-animal-3880449/


6:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

Python: Global Interpreter Lock (GIL)

• The GIL makes sure that only one thread runs Python byte code at any 
point in time

– Only released for I/O or other
long running tasks...

– … and then only if no Python
code can be run

• Threads can only share the
Python Interpreter, not use it
simultaneously

– Result: Even if you have multiple Cores in the CPUs, 
only one thread can run Python byte code

– All other threads which want to run Python code have to wait

https://github.com/python/cpython/blob/master/Python/ceval_gil.h

mailto:info@egenix.com


7:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

Goal: Use CPUs as efficiently as possible with Python

• Examples for asynchronous Python applications
– Web Server (Tornado, Starlette)
– Chat Server (Discord)
– IoT Server (Home Assistant)

• Examples for synchronous / threaded Python applications
– Database connections
– Many non-Python tools
– Embedded third party libraries

• Existing synchronous / threaded applications should remain usable,
but with the benefits of using asynchronous execution
where possible

mailto:info@egenix.com


8:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

Python: Threaded code / multiple cores/threads

• Threaded + multiple cores/threads = 
Much waiting

– Threads need to wait for the GIL
Delays due to I/O

– Not much parallel work
(only while doing I/O)

mailto:info@egenix.com


9:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

Python: Threaded code / multiple cores/threads

mailto:info@egenix.com


10:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

Python: Asynchronous to saturate a single core/thread

• Asynchronous + one thread/process =
less waiting, but only one core

– All application parts have to participate
– Active passing of control (cooperative)
– Less overhead compared to threads
– No parallel work, only simulated
– More efficient use of the core

mailto:info@egenix.com


11:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

Python: Extend asynchronous to all cores via processes

• Asynchronous + multiple processes = less waiting, all cores
– All application parts have to participate
– Active passing of control (cooperative)
– Needs more RAM
– Recommendation: 1-2 Processes per Core
– Partially parallel work
– More efficient use of the CPU

mailto:info@egenix.com


12:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

Python: Saturate other cores with external code

• Asynchronous + multiple threads = less waiting, more cores
– All application parts have to participate
– Active passing of control (cooperative)
– Parallel work between Python / external code
– More efficient use of the CPU
– Good approach when embedding

calculation intense packages or
external tools

mailto:info@egenix.com


13:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

async + await: Quick intro

• Coroutines
– Like “Subroutines”, but routine can internally give up

control to the calling function

• New keywords in Python 3.5
– Make working with Coroutines a lot easier
– async def task() - defines a Coroutine
– await io_call() - gives up control, until io_call() responds

• Package asyncio
– Provides the event loop to run coroutines
– Many other helpers to run coroutines

mailto:info@egenix.com


14:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

async + await: Example

Synchronous Asynchronous

mailto:info@egenix.com


15:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

async + await: Example

Synchronous Asynchronous

mailto:info@egenix.com


16:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

async + await: Example

Synchronous Asynchronous

mailto:info@egenix.com


17:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

Async doesn’t like blocking code

• Task objects are run in an Event Loop
– A task runs until it hits the next await,

control then goes back to the Event Loop

– Only works, if the code collaborates,
doesn’t unnecessarily blocks and
gives back control

mailto:info@egenix.com
https://pixabay.com/photos/fairground-lights-amusement-park-1149626/


18:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

Async doesn’t like blocking code

• Blocking Code
– It is possible to run blocking code in a separate

thread, so that it doesn’t prevent the Event Loop
from continuing with other tasks:

loop.run_in_executor()

– concurrent.futures.ThreadPoolExecutor
provides such an “Executor”

mailto:info@egenix.com
https://pixabay.com/photos/fairground-lights-amusement-park-1149626/


19:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

Example: Discord Bot, using VLC

• Idea: Take snapshots of 
YouTube streams and 
send them to Discord as 
preview (EuroPython 
2020)

• Implementation: Discord 
Bot using Discord.py 
(async) and python-vlc 
(threaded)

mailto:info@egenix.com


20:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

Discord.py async, VLC sync

Discord.py API uses async

We start the VLC clients 
using a separate thread 
executor

mailto:info@egenix.com


21:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

Discord.py Commands

Bot commands each start a 
separate aync method

“watch“ starts the VLC client 
und the streaming of the 
snapshots

mailto:info@egenix.com


22:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

Start VLC, then loop to send snapshots

This is where the VLC client 
is started as a task

Once started, we run an 
endless loop send snapshots 
to the Discord channel

mailto:info@egenix.com


23:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

Streaming is done in a separate thread, parallel to the bot

The method 
.start_vlc_player() is
synchronous

It is run in a separate thread, 
managed by 
the .thread_executor

Snapshots are taken 
regularly after the player
has started

mailto:info@egenix.com


24:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

Discord Bot (async), using VLC (sync) in the same process

mailto:info@egenix.com


25:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

Thank you for your attention !

Beautiful is better than ugly.

mailto:info@egenix.com


26:26(c) 2020 eGenix.com GmbH, info@egenix.com PyCon JP 2020

Contact

eGenix.com Software, Skills and Services GmbH
Marc-André Lemburg
Pastor-Löh-Str. 48
D-40764 Langenfeld
Germany

eMail: mal@egenix.com
Phone: +49 211 9304112
Fax: +49 211 3005250
Web: http://www.egenix.com/ 

mailto:info@egenix.com
mailto:mal@egenix.com
http://www.egenix.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

