

So you think your startup is worth \$10 million...

EuroPython 2016 Bilbao, Basque Country, Spain Marc-André Lemburg

(c) 2016 eGenix.com Software, Skills and Services GmbH, info@egenix.com

Speaker Introduction

Marc-André Lemburg

- Python since 1994
- Studied Mathematics
- eGenix.com GmbH
- Senior Software Architect
- Consultant / Trainer
- Python Core Developer
- EuroPython Society
- Python Software Foundation
- Based in Düsseldorf, Germany

Agenda

- Introduction
- Analysis
- Models
- Valuation
- Make of buy
- Conclusion

Buying Python Startups

Disclaimer

- These ideas were used in an actual valuation
 - We do not claim completeness
 - We do not claim scientific accuracy

• The results do make sense based on our experience in running projects

Value of an IT startup

Business value

- Market share = users / market size
- Cost efficiency (HR, processes)
- Innovation factors
- Risks (affecting operations)
- ...
- IT value
 - Quality of developers / managers
 - Application design quality (structure, flexibility)
 - Code quality (structure, metrics, tests)
 - Risks (affecting technical capabilities)

Business risks

- Affecting the business operation
 - Loosing important employees
 - Financial / investment risks
 - Market changes
 - Competing against open source / freebies
 - Infringements (patent/trademark/regulations)
 - Downtime
 - Data security breaches

IT risks

- Affecting technical capabilities
 - Problems in third party tools / extensions /services (dependencies)
 - Scalability problems (increase in load or storage requirements)
 - Flexibility problems (slow innovation)
 - Maintenance problems (fixing bugs takes too long)
 - Hardware issues (failing servers, disks, connectivity)
 - Environmental issues (fire, earthquake, storm)

Value of an IT startup

Business value

- Market share = users / market size
- Cost efficiency (HR, processes)
- Innovation factors
- Risks (affecting operations)
- _____.

• IT value

- Quality of developers / managers
- Application design quality (structure, flexibility)
- Code quality (structure, metrics, tests)
- Risks (affecting technical capabilities)

IT valuation project approach

- Analyze IT approach, team, system and data
- Initial development valuation based on:
 - COCOMO model
 - Effort model
- Apply "Added Value" factors (including risk)

Compare with reimplementation estimate
 → Make or buy

Agenda

- Introduction
- Analysis
- Models
- Valuation
- Make of buy
- Conclusion

IT valuation analysis factors

- Soft factors
 - Quality of developers
 - Architecture quality
 - Data model quality
 - Algorithmic quality
 - Extensibility
 - Risks
- Factors (partially) based on metrics
 - Code quality
- Known inaccuracies
 - Estimation risk buffer

IT valuation analysis factors

- Soft factors
 - Quality of developers
 - Architecture quality
 - Data model quality
 - Algorithmic quality
 - Extensibility
 - Risks
- Factors (partially) based on metrics
 - Code quality
- Known inaccuracies
 - Estimation risk buffer

Discuss with Team Experience Check Code

Experience

IT valuation analysis factors

- Soft factors
 - Quality of developers
 - Architecture quality
 - Data model quality
 - Algorithmic quality
 - Extensibility
 - Risks
- Factors (partially) based on metrics
 - Code quality
- Known inaccuracies
 - Estimation risk buffer

Raw code metrics

- Source data analysis
 - Lines of code (LOC), Source lines (SLOC), Logical lines (LLOC)
 - Blank lines = better readability
 - LOC per module
 - Functions/methods/classes per module
 - → Affect maintainability
- Python tool: Radon
 - https://pypi.python.org/pypi/radon

Raw code metrics

- Inline documentation
 - Comment lines (in relations to LOC)
 - Doc strings (in relation to LOC)
 - → Affect readability and maintainability

- Python tool: Radon
 - https://pypi.python.org/pypi/radon

EuroPython 2016

Code metrics

- Cyclomatic Complexity (CC)
 - more decision nodes = higher complexity
 - higher values = worse
- Maintainability Index (MI)
 - combination of complexity, density, SLOCs and comment lines
 - higher values = better

- Python tool: Radon
 - https://pypi.python.org/pypi/radon

EuroPython 2016

Test coverage

- Check unit test code coverage of code base
 - should show high values
 - note: 100% coverage is often misleading
- Check for end-to-end tests
 - should provide good coverage as well
- Check for randomized tests
 - to avoid biased test cases / missing test cases

- Python tool: coverage.py
 - https://coverage.readthedocs.io/

Agenda

- Introduction
- Analysis
- Models
- Valuation
- Make of buy
- Questions

Intermediate COCOMO Model

- COCOMO model is an industry standard for code valuation based on LOC
 - C/C++
 - Java
- Models:
 - Organic projects small teams, senior/regular people, agile process
 - Semi-detached projects medium sized teams, mixed skill set, semi-rigid requirements
 - Embedded projects tight requirements, low level architectures, usually hardware based

Intermediate COCOMO Model

- Formulas:
 - Effort Applied E = a * kLOC * EAF (in person months)
 - Dev Time $D = c * E^{d}$ (in months)
 - People required P = E / D (in persons)
- Parameter selection (organic project category):

- a=2.40, b=1.05, c=2.50, d=0.38

• Adjustment factor EAF (lower = more efficient)

- Normal: 0.9 1.4 (Java, C)
- Python: 0.5

https://en.wikipedia.org/wiki/COCOMO

Intermediate COCOMO Model Value

- Value = Developer costs * Development time
 - Take into account different costs for senior and regular developers
 - Use market rates / apply startup discounts
 - Add employer labor costs

Effort model

- Time it took the company to build its system
 - Broken down by senior and regular developers used in the process

- Value = Developer costs * Development time
 - Take into account different costs for senior and regular developers
 - Use market rates / apply startup discounts
 - Add employer labor costs

Agenda

- Introduction
- Analysis
- Models
- Valuation
- Make of buy
- Conclusion

Added Value

EuroPython 2016 26:41

Added value

- Apply +/- Factor % in the following categories:
 - Quality of developers
 - Architecture quality
 - Data model quality
 - Algorithmic quality
 - Code quality
 - Extensibility
 - Risks
 - Estimation risk buffer

Code valuation

- Pragmatic approach: Average from applied models
 - COCOMO model
 - Effort model
- Apply added value factor

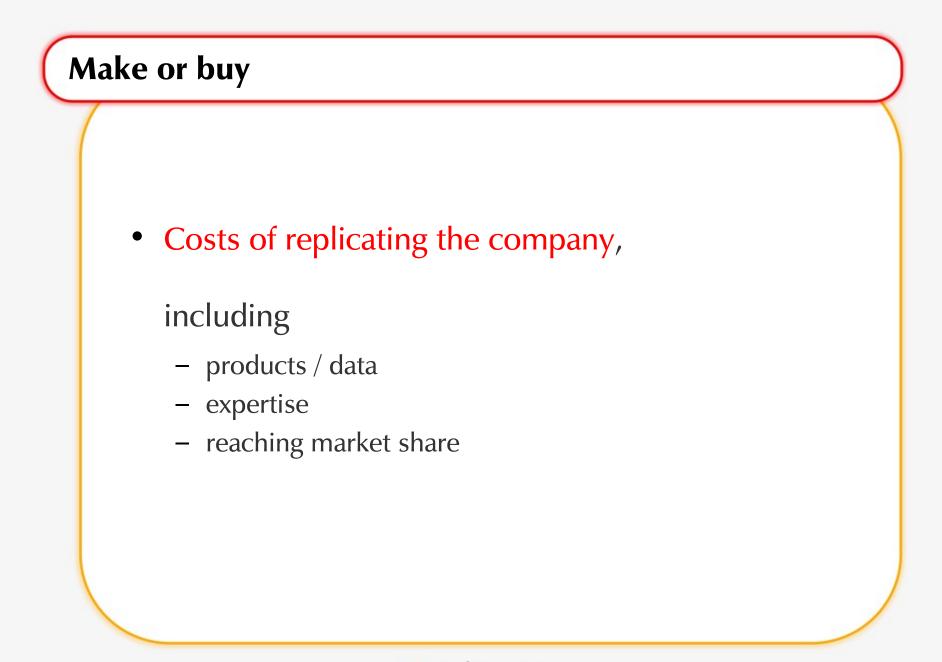
• Final estimate

Data valuation (if applicable)

- Average from applied models
 - COCOMO model
 - Effort model
- Apply added value factor

• Final estimate

(c) 2016 eGenix.com GmbH, info@egenix.com



Agenda

- Introduction
- Analysis
- Models
- Valuation
- Make or buy
- Questions

(c) 2016 eGenix.com GmbH, info@egenix.com



Make or buy

- Business side
 - Setting up company
 - Recruiting
 - Marketing costs
 - ...
- IT systems
 - Costs of acquiring needed expert knowledge

EGENIX.COM

- Costs of reimplementing all systems
- (Costs of recreating data)
- Development time

Make or buy

- Business side
 - Setting up company
 - Recruiting
 - Marketing costs
- IT systems

. . .

- Costs of acquiring needed expert knowledge
- Costs of reimplementing all systems
- (Costs of recreating data)
- Development time

Make or buy

- For IT systems:
 - use existing system as specification
 - estimate effort needed to recreate systems
 - (estimate effort needed to recreate data)
 - since timing is important:
 use senior developers only

• Result: Offer for rebuilding the system

Agenda

- Introduction
- Analysis
- Models
- Valuation
- Make or buy
- Conclusion

(c) 2016 eGenix.com GmbH, info@egenix.com

EuroPython 2016

Add Value to your Startup

(c) 2016 eGenix.com GmbH, info@egenix.com

EuroPython 2016 36:41

How to increase the IT value of a Python startup

- Pay attention to code complexity / structure/ quality
- Design in a flexible and easily extensible way
- Pay attention to code test coverage and documentation
- Invest into good data(base) structures
- Invest into good algorithms
- Reduce risks added via 3rd party dependencies

Questions

Photo References

CC BY / CC BY-SA licensed photos:

https://www.flickr.com/photos/132084522@N05/17086570218/ https://www.flickr.com/photos/chiropractic/6844437142/ https://www.flickr.com/photos/armydre2008/16366377932/ https://www.flickr.com/photos/nasaearthobservatory/6405553723/ Public domain clip arts:

https://openclipart.org/detail/8879/rubber-duck https://openclipart.org/detail/215201/evolution

All other photos and images are used by permission.

Thank you for your attention

Beautiful is better than ugly.

Contact

eGenix.com Software, Skills and Services GmbH Marc-André Lemburg Pastor-Löh-Str. 48 D-40764 Langenfeld Germany

eMail:	mal@egenix.com
Phone:	+49 211 9304112
Fax:	+49 211 3005250
Web:	http://www.egenix.com/

