
(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Designing Large-Scale
Applications in Python

Lessons learned in more than 10 years of
Python Application Design

EuroPython Conference 2008
Vilnius, Lithuania

Marc-André Lemburg

EGENIX.COM Software GmbH
Germany

2

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Speaker Introduction: Marc-André Lemburg

• CEO eGenix.com and Consultant
– More than 20 years software development experience
– Diploma in Mathematics
– Expert in Python, Application Design, Web Technologies and Unicode
– Python Core Developer (since 2000)
– Python Software Foundation Board Member (2002-2004)
– Contact: mal@egenix.com

• eGenix.com Software GmbH, Germany
– Founded in 2000
– Core business:

• Consulting: helping companies write successful Python software
• Product design: professional quality Python/Zope

developer tools (mxODBC, mxDateTime, mxTextTools, etc.)
– International customer base

mailto:mal@egenix.com

3

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Agenda

1. Introduction

2. Application Design

3. Before you start…

4. Discussion

4

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Introduction

1. Introduction

2. Application Design

3. Before you start…

4. Discussion

5

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Designing Python Applications

• Python makes it very easy to write complex applications
with very little code
– It’s easy to create bad designs fast
– Rewriting code is fast as well

• Application design becomes the most important factor in
Python projects

• This talk presents a general approach to the problem
– … which is not necessarily specific to Python

6

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Large-scale applications

• What can be considered “large-scale” in Python ?
– Server application: >100 thousand lines of Python code
– Client application: >50 thousand lines of Python code

– Third-Party code: > 10 thousand lines of code
– Typically a mix of Python code and C extensions

• Examples:
– Zope / Plone
– eGenix Application Server
– eGenix projects: e.g. Web Service Engine, XML Database,

ASP Trading System

7

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Why write large-scale applications in Python ?

• Highly efficient
– small teams can scale up against large companies
– very competitive turn-around times
– small investments can result in high gains

• Very flexible
– allows rapid design, refactoring and rollout
– highly adaptive to new requirements and environments
– no lock-in

• Time-to-market
– develop in weeks rather than months

8

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Application Design

1. Introduction

2. Application Design

3. Before you start…

4. Discussion

9

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

The Design Concept: Structured …

• Structured approach to application design
–– Divide et Divide et ImperaImpera (divide and conquer)

– Top-down method:
1. Application model
2. Processing model
3. Layer model
4. Components
5. Management objects
6. Data and Task objects

• Lots of experience also helps…

10

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

The Design Concept: … or using “import this”

• Zen of Application Design

– Keep things as simple as possible,
but not simpler (KISS).

– Before doing things twice,
think twice (DRY).

– If things start to get too complex, management is needed.

– If management doesn’t help, decomposition is needed.

– Keep in mind: There’s beauty in design.

11

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Divide et Impera: Step by step approach

• Goal: Break down complexity as far as possible !

• Top-down method:
1. Application model
2. Processing model
3. Layer model
4. Components
5. Management objects
6. Data and Task objects

12

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Divide et Impera: Start with the type of application

• Goal: Break down complexity as far as possible !

• Top-down method:
1. Application model
2. Processing model
3. Layer model
4. Components
5. Management objects
6. Data and Task objects

13

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Choose a suitable application model

• Client-Server
– Client application / Server application
– Web client / Server application

• Multi-threaded stand-alone
– Stand-alone GUI application

• Single process
– Command-line application
– Batch job application

• etc.

ClientClient

ServerServer

GUI

Event Handler
Business Logic

InputInput ProcessorProcessor OutputOutput

14

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Divide et Impera: How should requests be processed ?

• Goal: Break down complexity as far as possible !

• Top-down method:
1. Application model
2. Processing model
3. Layer model
4. Components
5. Management objects
6. Data and Task objects

15

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Identify the processing model

• Identify the processing scheme:

– Single process
– Multiple processes
– Multiple threads
– Asynchronous processing

– A mix of the above

Task 1Task 1
Interface Logic

Application Logic
Server Logic

Storage Logic

Task 2Task 2
Interface Logic

Application Logic
Server Logic

Storage Logic

Task 3Task 3
Interface Logic

Application Logic
Server Logic

Storage Logic

16

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Identify the processing model

• Identify the process/thread boundaries:

– Which components (need to) share the
same object space ?

– Where is state kept ?

– What defines an application instance ?

ApplicationApplication
Interface Logic

Application Logic

Server Logic

Storage Logic

17

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Divide et Impera: Break down by functionality

• Goal: Break down complexity as far as possible !

• Top-down method:
1. Application model
2. Processing model
3. Layer model
4. Components
5. Management objects
6. Data and Task objects

18

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Find the right layer model

• Every application can be divided into layers of functionality
defined by the flow of data through the application

– Top layer:
interface to the outside world

– Intermediate layers:
administration and processing

– Bottom layer:
data storage

ApplicationApplication
Interface Logic

Application Logic

Server Logic

Storage Logic

19

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Examples of layer models

ClientClient

Web
Browser

• Client application:
GUI / Application Logic / Storage Logic

• Web application:
Web Browser/ Network / Apache /
Interface Logic (CGI, SCGI, WSGI) /
Server Logic / Application Logic /
Storage Logic

• Batch processing:
File I/O / Application Logic / Storage Logic

• Custom model

ServerServer
Interface Logic

Application Logic
Server Logic

Storage Logic

20

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Examples of layer models

ClientClient

Web
Browser

• Client application:
GUI / Application Logic / Storage Logic

• Web application:
Web Browser/ Network / Apache /
Interface Logic (CGI, SCGI, WSGI) /
Server Logic / Application Logic /
Storage Logic

• Batch processing:
File I/O / Application Logic / Storage Logic

• Custom model

ServerServer
Interface Logic

Application Logic
Server Logic

Storage Logic

21

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Example: Web Client + Server Application

• Situation:

– Client is a standard web-browser

– Server needs to take a lot of load and
will have to do all the calculation work

– Server needs to be fail-safe
– Server is connected to a database

22

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Example: Web Client + Server Application

• Solution:

– Application model:
client-server

– Processing model:
multiple process
model

– Layer model:
typical application
server layers

ClientClient

Web
Browser

ClientClient

Web
Browser

ClientClient

Web
Browser

Apache Web ServerApache Web Server

Multiple Process Broker SCGIMultiple Process Broker SCGI

Server ProcessServer Process
Interface Logic

Application Logic

Server Logic

Storage Logic

Server ProcessServer Process
Interface Logic

Application Logic

Server Logic

Storage Logic

Server ProcessServer Process
Interface Logic

Application Logic

Server Logic

Storage Logic

Database

23

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Find the right layer model: ok, but now what … ?

ApplicationApplication
Interface Logic

Application Logic

Server Logic

Storage Logic

• Layers are usually easy to identify,
given the application model

… but often hard to design

24

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Divide et Impera: Layers are still too complex

• Goal: Break down complexity as far as possible !

• Top-down approach:
1. Application model
2. Processing model
3. Layer model
4. Components
5. Management objects
6. Data and Task objects

25

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Breaking layers into smaller pieces: Components

• Layers provide a data driven separation of functionality

• Problem:
– The level of complexity is usually too high

to implement these in one piece of code

¾ Solution:
– build layers using a set of

loosely coupled components

26

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Component design

• Components should encapsulate higher level concepts
within the application

• Components provide independent building blocks
for the application

27

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Component examples

• Components …
– provide the database interface
– implement the user management
– implement the session management
– provide caching facilities
– interface to external data sources
– provide error handling facilities
– enable logging management
– etc.

28

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Advantages of components: Easily replaceable

• They should be easily replaceable
to adapt the application to new requirements,
e.g.
– porting the application to a new database backend,
– using a new authentication mechanism, etc.

• If implemented correctly, they will even allow
switching to a different processing model,
should the need arise

29

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Advantages of components: Loose coupling

• Loose coupling of the components makes it possible to

– refine the overall application design,
– refactor parts of the layer logic, or
– add new layers

 without having to rewrite large parts
of the application code

30

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Component implementation

• Each component is represented by a component object

• Component interfaces must be simple and high-level
enough to allow for loose coupling
– Internal parts of the components are never accessed directly,

only via the component interface

• Component objects should never keep state across requests
– Ideally, they should also be thread-safe

31

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Layers and components: The big picture

Process Boundary (Multiple Process Model)

Interface Layer Application Instance Layer

RequestComponent ResponseComponent SystemComponent

Server Layer

SessionComponent UserComponent

Application Layer

HandlerComponent PresentationComponent

ErrorComponent
ImportExportComponent ValidationComponent

LogComponent
Storage Layer

DatabaseComponent FilesystemComponent DebugComponent

32

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Layers and components: The big picture

Process Boundary (Multiple Process Model)

Interface Layer Application Instance Layer

RequestComponent ResponseComponent SystemComponent

Server Layer
All Component Objects

are connected to the
SystemComponent

object

SessionComponent UserComponent

Application Layer

HandlerComponent PresentationComponent

ErrorComponent
ImportExportComponent ValidationComponent

LogComponent
Storage Layer

DatabaseComponent FilesystemComponent DebugComponent

33

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Special component: The System Object

• One system component object which represents
the application instance

– All component objects are created and managed by
the system object

– Components can access each other through
the system object (circular references !)

– There can be multiple system objects,
e.g. one running in each thread

34

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Split layers into components: Summary

• General approach:

– One system component
that manages the
application instance

– At least
one component per layer

Process Boundary (Multiple Process Model)

Interface Layer

Server Layer

Application Layer

Storage Layer

RequestComponent ResponseComponent

SessionComponent UserComponent

HandlerComponent PresentationComponent

ValidationComponentImportExportComponent

FilesystemComponentDatabaseComponent

Application Instance Layer

SystemComponent

ErrorComponent

LogComponent

DebugComponent

35

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Divide et Impera: What if components are still too complex ?

• Goal: Break down complexity as far as possible !

• Top-down approach:
1. Application model
2. Processing model
3. Layer model
4. Components
5. Management objects
6. Data and Task objects

36

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Reduce component complexity: Management objects

• Management objects
– help simplify component object implementations
– work on or with groups of low-level data/task objects
– provide application internal APIs
– interface to the “outside world”,

e.g. file system, database, GUI, etc.

• Note:
The distinction between management objects and
component objects is not always clear …

37

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Management object or component ?

• Use component objects to represent
logical units / concepts within the application
– without going into too much detail…

• Use management objects to work on
collections of data/task objects
– to simplify component implementations
– to avoid direct interfacing between the

data/task objects

¾ Try to never mix responsibilities

38

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Divide et Impera: The Lowest Level

• Goal: Break down complexity as far as possible !

• Top-down approach:
1. Application model
2. Processing model
3. Layer model
4. Components
5. Management objects
6. Data and Task objects

39

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Lowest level: Data and task objects

• Data objects
– encapsulate data (nothing much new here)

• Task objects
– interaction with multiple objects
– I/O on collections of objects
– delegating work to other management objects
– interfacing to component objects
– etc.

40

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Example: Internal Communication

HandlerComponent PresentationComponent

ValidationComponent

ImportExportComponent

TaskManagerTaskManager

EditEdit StoreStore ExportExport

ImportManagerImportManager

CSVImportCSVImport XMLImportXMLImport XLSImportXLSImport

ExportManagerExportManager

CSVExportCSVExport XMLExportXMLExport XLSExportXLSExport

Management
Object

Data/Task
Object

SystemComponent

Object
Access PathApplication Layer

41

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Special data object: Request Context Object

• This is useful for task based applications, e.g.
web applications

• Data management:
– Components don’t store

per-request state !

¾ Per-request data
is stored and passed
around via
Request Context Objects

Process Boundary (Multiple Process Model)

Interface Layer

Server Layer

Application Layer

Storage Layer

RequestComponent ResponseComponent

SessionComponent UserComponent

HandlerComponent PresentationComponent

ValidationComponentImportExportComponent

FilesystemComponentDatabaseComponent

Application Instance Layer

SystemComponent

ErrorComponent

LogComponent

DebugComponent

Request Context
Object

Request Context
Object

42

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

And don’t forget: There’s beauty in design !

43

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Before you start...

1. Introduction

2. Application Design

3. Before you start…

4. Discussion

44

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Structuring your modules

• First some notes on the import statement:
– Keep import dependencies low;

avoid “from … import *”

– Always use absolute import paths
(defeats pickle problems among other things)

– Always layout your application modules using Python packages

– Import loops can be nasty;
import on demand can sometimes help

45

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Finding the right package structure

• Group components and associated
management modules in
Python packages (directories)

• Use the application and layer model
as basis for the package layout

46

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Finding the right package structure

• Use one module per
– management/component class

– group of object classes
managed by the same management class

¾ keep modules small;
if in doubt, split at class boundaries

47

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Data, classes and methods

• Use data objects for data encapsulation…
– instead of simple types (tuples, lists, dictionaries, etc.)

• Namespace objects are one honking great idea
– do more of those … ☺

48

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Data, classes and methods

• Use methods even for simple tasks…
– but don’t make them too simple

• Use method groups for more complex tasks
– e.g. to implement a storage query interface

49

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Data, classes and methods

• Use mix-in classes if method groups can
be deployed in more than class context

– If you need to write the same logic twice,
think about creating a mix-in class to encapsulate it,
or put it on a base class

– Avoid using mix-in classes, if only one class makes use of them

50

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Make mistakes… and learn from them: Refactoring

• If an implementation gets too complicated,
sit down and reconsider the design…
– often enough a small change in the way

objects interact can do wonders

• Be daring when it comes to rewriting
larger parts of code !
– It sometimes takes more than just a few changes

to get a design right
– It is often faster to implement a good design from scratch,

than trying to fix a broken one

51

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Often forgotten: Documentation

• Always document the code
that you write !

• Use doc-strings and inline comments
– doc-strings represent your method’s

contracts with the outside world

• Block logical units using empty lines…
– Python loves whitespace ☺

52

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Often forgotten: Documentation

• Document the intent of the methods,
classes and logical code units…
– not only their interface

• Use descriptive identifier names…
– even if they take longer to type

53

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Quality Assurance: XP helps !

• Use extreme programming techniques whenever possible:

– Always read the code top to bottom after you have
made changes or added something new to it

– Try to follow the flow of information in your mind
(before actually running the code)

– Write unit tests for the code and/or test it
until everything works as advertised in the
doc-strings

54

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Quality Assurance: A few additional tips

• Typos can easily go unnoticed in Python:
use the editor’s auto-completion function
as often as possible

• Use tools like PyChecker to find hidden typos
and possibly bugs

• Always test code before committing it to
the software repository

55

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Conclusion

• Structured application design can go a long way

• Divide-et-impera helps keep basic buildings blocks
manageable

• Extreme programming doesn’t have to spoil the fun

56

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

All this sounds familiar…

• Application design is in many ways like
structuring a company:
• Divisions need to be set up (component objects)
• Responsibilities need to be defined (management vs.

data/task objects)
• Processes need to be defined (component/management object APIs)

• Applications work in many ways like companies:
• Customer interaction (user interface)
• Information flow (application interface)
• Decision process (business logic)
• Accounting and data keeping (storage interface)

57

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Discussion

1. Introduction

2. Application Design

3. Before you start…

4. Discussion

58

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Developing large-scale applications in Python

•

Questions ?

59

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

And finally...

Thank you for your time.

60

Designing Large-Scale Applications

(c) 2007 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2007(c) 2008 EGENIX.COM Software GmbH, info@egenix.com EuroPython Conference 2008

Contact

eGenix.com Software, Skills and Services GmbH
Marc-André Lemburg
Pastor-Löh-Str. 48
D-40764 Langenfeld
Germany

eMail: mal@egenix.com
Phone: +49 211 9304112
Fax: +49 211 3005250
Web: http://www.egenix.com/

mailto:mal@egenix.com
http://www.egenix.com/

	Designing Large-Scale Applications in Python
	Speaker Introduction: Marc-André Lemburg
	Agenda
	Introduction
	Designing Python Applications
	Large-scale applications
	Why write large-scale applications in Python ?
	Application Design
	The Design Concept: Structured …
	The Design Concept: … or using “import this”
	Divide et Impera: Step by step approach
	Divide et Impera: Start with the type of application
	Choose a suitable application model
	Divide et Impera: How should requests be processed ?
	Identify the processing model
	Identify the processing model
	Divide et Impera: Break down by functionality
	Find the right layer model
	Examples of layer models
	Examples of layer models
	Example: Web Client + Server Application
	Example: Web Client + Server Application
	Find the right layer model: ok, but now what … ?
	Divide et Impera: Layers are still too complex
	Breaking layers into smaller pieces: Components
	Component design
	Component examples
	Advantages of components: Easily replaceable
	Advantages of components: Loose coupling
	Component implementation
	Layers and components: The big picture
	Layers and components: The big picture
	Special component: The System Object
	Split layers into components: Summary
	Divide et Impera: What if components are still too complex ?
	Reduce component complexity: Management objects
	Management object or component ?
	Divide et Impera: The Lowest Level
	Lowest level: Data and task objects
	Example: Internal Communication
	Special data object: Request Context Object
	And don’t forget: There’s beauty in design !
	Before you start...
	Structuring your modules
	Finding the right package structure
	Finding the right package structure
	Data, classes and methods
	Data, classes and methods
	Data, classes and methods
	Make mistakes… and learn from them: Refactoring
	Often forgotten: Documentation
	Often forgotten: Documentation
	Quality Assurance: XP helps !
	Quality Assurance: A few additional tips
	Conclusion
	All this sounds familiar…
	Discussion
	Developing large-scale applications in Python
	And finally...
	Contact

